技术领域
本发明属于玻璃膜制备领域,涉及一种隔热抗辐射夹层玻璃膜及其生产工艺。
背景技术
防辐射玻璃指具有防护如x射线、γ射线等放射性射线功能的特种玻璃,近年来,随着放射医学、原子能工业等领域的发展,射线防护问题也受到了广泛关注,x射线、γ射线等放射性射线都属于高能量的电磁波,这种射线在通过不同的介质时,能导致介质的原子发生电离现象,电磁波的波长愈短,其穿透能力就愈强。由于射线的波长与原子的大小属于同一数量级,所以分子吸收系数,可由组成分子的各元素的原子吸收系数相加而得。因此,组成玻璃的各种氧化物的质量吸收系数可按这一原理算出。普通玻璃的组成并不能有效吸收这类射线,必须在玻璃组成中引入大量原子序数高的元素才能提高它的吸收能力,但是在玻璃中直接添加抗辐射物质,不仅造成玻璃整体的造价较高,并且玻璃制备过程中容易出现抗辐射物质分布不均匀的情况,进而造成剥离的抗辐射性能分布不均匀。
现有的技术中为了降低成本,通常是直接在玻璃的表面复合一层抗辐射膜,但是长期使用情况下,抗辐射膜在外力作用下容易出现刮花和剥离的情况,不仅影响玻璃的美观,并且使得剥离的抗辐射性能同时降低。
发明内容
本发明的目的在于提供一种隔热抗辐射夹层玻璃膜及其生产工艺,通过制备抗辐射、低导热性能的覆膜剂,然后将覆膜剂涂布在两层玻璃之间,通过覆膜剂将两层玻璃进行粘合固定,使得两层玻璃之间形成玻璃膜,玻璃膜本身具有抗辐射和隔热性能,进而使得制备的双层玻璃具有较高的抗辐射性能和隔热性能,同时通过两层玻璃的保护使得其中的玻璃膜不会在外力作用下刮花或者剥离,进而提高隔热抗辐射玻璃的使用寿命,解决了现有技术中直接在玻璃的表面复合一层抗辐射膜,但是长期使用情况下,抗辐射膜在外力作用下容易出现刮花和剥离的情况,不仅影响玻璃的美观,并且使得剥离的抗辐射性能同时降低的问题。
本发明的目的可以通过以下技术方案实现:
一种隔热抗辐射夹层玻璃膜,包括如下重量份的各组分:
高强度环氧树脂73-79份、全氟烷基醚季铵盐6-7份、聚醚硅油5-8份、硅溶胶16-18份、富硼固化剂26-28份、二甲基亚砜210-220份;
其中高强度环氧树脂的具体制备过程如下:
步骤1:将三聚氰胺加入甲醇中,搅拌混合溶解后升温至80-90℃,然后逐滴向反应容器中滴加对羟基苯甲醛,边滴加边剧烈搅拌,滴加过程中保持温度不变,滴加完全后恒温反应13-15h,然后降低至室温,有固体析出,过滤后依次用甲醇、丙酮洗涤后烘干,得到粉末产物;三聚氰胺中的氨基能够与对羟基苯甲醛中的醛基发生亲核加成反应,形成亚氨基,其中亚氨基的-C=N-双键与苯环形成三聚氰胺和主环和对羟基苯甲醛的主环之间形成共轭体系,进而能够提高产物的强度和韧性;其中三聚氰胺与羟基苯甲醛物质的量之比为1:3.1-3.2;
步骤2:将步骤1中制备的粉末产物加入二甲基亚砜中搅拌溶解后升温至80-90℃,然后向反应容器中加入氢氧化钠,混合3-5min,再向其中加入丙三醇三缩水甘油醚,恒温反应10-12h,蒸发除去其中的溶剂,然后分别用水、乙醇洗涤烘干,得到高强度环氧树脂粉末;其中每克粉末产物中加入0.29-0.3g氢氧化钠,加入二甲基亚砜10-12mL,同时每克粉末产物中加入丙三醇三缩水甘油醚1.86-1.89g;粉末产物苯环上三个方向上的酚羟基与丙三醇三缩水甘油醚三个方向上的环氧基团开环反应形成聚合物,由于酚羟基在三个不同方向,同时环氧基团也在三个不同方向,进而聚合物形成超支化的网状结构,提高了聚合物的分散性能和固化效率,同时由于粉末产物本身具有较高的强度和韧性,进而能够提高聚合物的强度和韧性;
富硼固化剂的制备过程如下:
①将4-氨基苯酚和二甲基甲酰胺加入反应釜中,同时向反应釜中加入碳酸氢钠调节溶液的pH=9-10,然后向反应溶液中加入9-芴甲基氯甲酸酯,反应过程中控制反应溶液的pH=9-10,常温下搅拌反应8-10h,然后得到的溶液进行减压蒸馏,回收溶剂,得到的固体产物用pH=2-3的NaHSO4溶液洗涤后烘干,得到产物A;其中每克4-氨基苯酚中加入二甲基甲酰胺13-15mL,加入9-芴甲基氯甲酸酯2.39-2.41g;
②将步骤①中制备的产物A和浓度为5%的硼酸溶液加入丙酮中,升温至90-100℃恒温反应14-18h,然后蒸发除去其中的溶剂,并将得到的粉末产物用乙醇洗涤后烘干,得到产物B;硼酸与产物A中的酚羟基反应,进而使得硼元素引入产物B中,形成硼化有机物,由于硼化有机物能够吸收射线进而实现防辐射,使得制备的产物B具有一定的防辐射性能;其中每克产物A中加入浓度为5%的硼酸溶液1.5-1.8g;
③将浓氨水、二氧六环、浓度为4mol/L的NaOH溶液按照体积比为30-32:9-10:1的比例混合均匀,然后向混合液中加入步骤②中制备的产物B,常温下搅拌反应20-22h,过滤后依次用水、乙醇洗涤烘干,得到富硼固化剂;每6-7mL混合液中加入1g产物B;
一种隔热抗辐射夹层玻璃膜的生产工艺,具体生产过程如下:
第一步,将高强度环氧树脂加入二甲基亚砜中,混合均匀后向其中加入全氟烷基醚季铵盐、聚醚硅油和硅溶胶,搅拌混合均匀,然后向其中加入富硼固化剂常温下搅拌混合均匀,得到粘稠的覆膜剂;由于高强度环氧树脂为超支化结构,具有很好的分散性,全氟烷基醚季铵盐、聚醚硅油和硅溶胶与高强度环氧树脂混合后,能够均匀分散在树脂中,同时富硼固化剂中的三个氨基均布在三个方向,在与高强度环氧树脂反应时,富硼固化剂与高强度环氧树脂超支化网状结构中交联反应,使得网状结构的空隙更小,使得全氟烷基醚季铵盐、聚醚硅油和硅溶胶均匀包覆在网状结构骨架中,全氟烷基醚季铵盐、聚醚硅油的加入使得覆膜液中引入氟元素和硅元素,进而使得覆膜液具有一定的耐老化性能和热稳定性,同时硅溶胶具有较低的导热系数,硅溶胶的加入使得覆膜液的导热系数降低;
第二步,将第一步中制备的覆膜机快速涂布在底层玻璃的表面,喷涂厚度为0.1-0.15mm,喷涂后将剥离放置在50-60℃的烘干室中烘至覆膜液凝固,此时底层剥离的表面形成一层半透明粘合玻璃膜,然后将顶层玻璃的底面压合在粘合玻璃膜表面,通过粘合薄膜的粘合作用固定,然后将复合后的双层剥离放置在室温下晾3-4天,得到双层粘合玻璃,由于覆膜液具有较低的导热系数,涂布后形成的玻璃膜导热系数较低,隔热性能较高。
本发明的有益效果:
本发明通过制备抗辐射、低导热性能的覆膜剂,然后将覆膜剂涂布在两层玻璃之间,通过覆膜剂将两层玻璃进行粘合固定,使得两层玻璃之间形成玻璃膜,玻璃膜本身具有抗辐射和隔热性能,进而使得制备的双层玻璃具有较高的抗辐射性能和隔热性能,同时通过两层玻璃的保护使得其中的玻璃膜不会在外力作用下刮花或者剥离,进而提高隔热抗辐射玻璃的使用寿命,解决了现有技术中直接在玻璃的表面复合一层抗辐射膜,但是长期使用情况下,抗辐射膜在外力作用下容易出现刮花和剥离的情况,不仅影响玻璃的美观,并且使得剥离的抗辐射性能同时降低的问题。
本发明制备的高强度环氧树脂为超支化结构,具有很好的分散性,全氟烷基醚季铵盐、聚醚硅油和硅溶胶与高强度环氧树脂混合后,能够均匀分散在树脂中,同时富硼固化剂中的三个氨基均布在三个方向,在与高强度环氧树脂反应时,富硼固化剂与高强度环氧树脂超支化网状结构中交联反应,使得网状结构的空隙更小,使得全氟烷基醚季铵盐、聚醚硅油和硅溶胶均匀包覆在网状结构骨架中,全氟烷基醚季铵盐、聚醚硅油的加入使得覆膜液中引入氟元素和硅元素,进而使得覆膜液具有一定的耐老化性能和热稳定性,同时硅溶胶具有较低的导热系数,硅溶胶的加入使得覆膜液的导热系数降低,进而使得制备的玻璃膜具有较高的隔热性能,并且隔热性分散均匀。
本发明制备的富硼固化剂中含有硼元素,使得固化剂本身具有较高的抗辐射性能,通过与高强度环氧树脂交联固化后使得硼元素均匀分布在骨架结构上,进而使得制备的玻璃膜具有较高的抗辐射性能,并且抗辐射性能分布均匀。
附图说明
为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。
图1为本发明粉末产物制备过程中反应结构式;
图2为本发明富硼固化剂制备过程中反应结构式。
具体实施方式
请参阅图1和图2结合如下实施例进行详细说明:
实施例1:
高强度环氧树脂的具体制备过程如下:
步骤1:将1.26kg三聚氰胺加入20L甲醇中,搅拌混合溶解后升温至80-90℃,然后逐滴向反应容器中滴加3.78kg对羟基苯甲醛,边滴加边剧烈搅拌,滴加过程中保持温度不变,滴加完全后恒温反应13-15h,然后降低至室温,有固体析出,过滤后依次用甲醇、丙酮洗涤后烘干,得到粉末产物;
步骤2:将1kg步骤1中制备的粉末产物加入10L二甲基亚砜中搅拌溶解后升温至80-90℃,然后向反应容器中加入0.29kg氢氧化钠,混合3-5min,再向其中加入1.86kg丙三醇三缩水甘油醚,恒温反应10-12h,蒸发除去其中的溶剂,然后分别用水、乙醇洗涤烘干,得到高强度环氧树脂粉末。
实施例2:
高强度环氧树脂的具体制备过程如下:
步骤1:将1.26kg三聚氰胺加入20L甲醇中,搅拌混合溶解后升温至80-90℃,然后逐滴向反应容器中滴加2.44kg对羟基苯甲醛,边滴加边剧烈搅拌,滴加过程中保持温度不变,滴加完全后恒温反应13-15h,然后降低至室温,有固体析出,过滤后依次用甲醇、丙酮洗涤后烘干,得到粉末产物;
步骤2:将1kg步骤1中制备的粉末产物加入10L二甲基亚砜中搅拌溶解后升温至80-90℃,然后向反应容器中加入0.29kg氢氧化钠,混合3-5min,再向其中加入1.86kg丙三醇三缩水甘油醚,恒温反应10-12h,蒸发除去其中的溶剂,然后分别用水、乙醇洗涤烘干,得到高强度环氧树脂粉末。
实施例3:
富硼固化剂的制备过程如下:
①将1kg4-氨基苯酚和13L二甲基甲酰胺加入反应釜中,同时向反应釜中加入碳酸氢钠调节溶液的pH=9-10,然后向反应溶液中加入2.39kg9-芴甲基氯甲酸酯,反应过程中控制反应溶液的pH=9-10,常温下搅拌反应8-10h,然后得到的溶液进行减压蒸馏,回收溶剂,得到的固体产物用pH=2-3的NaHSO4溶液洗涤后烘干,得到产物A;其中每克4-氨基苯酚中加入二甲基甲酰胺13-15mL,加入9-芴甲基氯甲酸酯2.39-2.41g;
②将1kg步骤①中制备的产物A和1.5kg浓度为5%的硼酸溶液加入丙酮中,升温至90-100℃恒温反应14-18h,然后蒸发除去其中的溶剂,并将得到的粉末产物用乙醇洗涤后烘干,得到产物B;
③将浓氨水、二氧六环、浓度为4mol/L的NaOH溶液按照体积比为30-32:9-10:1的比例混合均匀,然后向6L混合液中加入1kg步骤②中制备的产物B,常温下搅拌反应20-22h,过滤后依次用水、乙醇洗涤烘干,得到富硼固化剂。
实施例4:
一种隔热抗辐射夹层玻璃膜的生产工艺,具体生产过程如下:
第一步,将7.3kg实施例1制备的高强度环氧树脂加入21kg二甲基亚砜中,混合均匀后向其中加入0.6kg全氟烷基醚季铵盐、0.5kg聚醚硅油和1.6kg硅溶胶,搅拌混合均匀,然后向其中加入2.6kg实施例3制备的富硼固化剂常温下搅拌混合均匀,得到粘稠的覆膜剂;
第二步,将第一步中制备的覆膜机快速涂布在底层玻璃的表面,喷涂厚度为0.1-0.15mm,喷涂后将剥离放置在50-60℃的烘干室中烘至覆膜液凝固,此时底层剥离的表面形成一层半透明粘合玻璃膜,然后将顶层玻璃的底面压合在粘合玻璃膜表面,通过粘合薄膜的粘合作用固定,然后将复合后的双层剥离放置在室温下晾3-4天,得到双层粘合玻璃。
实施例5:
一种隔热抗辐射夹层玻璃膜的生产工艺,具体生产过程如下:
第一步,将7.3kg实施例2制备的高强度环氧树脂加入21kg二甲基亚砜中,混合均匀后向其中加入0.6kg全氟烷基醚季铵盐、0.5kg聚醚硅油、1.6kg硅溶胶,搅拌混合均匀,然后向其中加入2.6kg实施例3制备的富硼固化剂常温下搅拌混合均匀,得到粘稠的覆膜剂;
第二步,将第一步中制备的覆膜机快速涂布在底层玻璃的表面,喷涂厚度为0.1-0.15mm,喷涂后将剥离放置在50-60℃的烘干室中烘至覆膜液凝固,此时底层剥离的表面形成一层半透明粘合玻璃膜,然后将顶层玻璃的底面压合在粘合玻璃膜表面,通过粘合薄膜的粘合作用固定,然后将复合后的双层剥离放置在室温下晾3-4天,得到双层粘合玻璃。
实施例6:
一种隔热抗辐射夹层玻璃膜的生产工艺,具体生产过程如下:
第一步,将7.3kg实施例2制备的高强度环氧树脂加入21kg二甲基亚砜中,混合均匀后向其中加入0.6kg全氟烷基醚季铵盐、0.5kg聚醚硅油、1.6kg硅溶胶和1.82kg浓度为5%的硼酸溶液,搅拌混合均匀,然后向其中加入2.6kg1,3,5-三氨基苯,常温下搅拌混合均匀,得到粘稠的覆膜剂;
第二步,将第一步中制备的覆膜机快速涂布在底层玻璃的表面,喷涂厚度为0.1-0.15mm,喷涂后将剥离放置在50-60℃的烘干室中烘至覆膜液凝固,此时底层剥离的表面形成一层半透明粘合玻璃膜,然后将顶层玻璃的底面压合在粘合玻璃膜表面,通过粘合薄膜的粘合作用固定,然后将复合后的双层剥离放置在室温下晾3-4天,得到双层粘合玻璃。
实施例7:
一种隔热抗辐射夹层玻璃膜的生产工艺,具体生产过程如下:
第一步,将7.3kg双酚A型环氧树脂加入21kg二甲基亚砜中,混合均匀后向其中加入0.6kg全氟烷基醚季铵盐、0.5kg聚醚硅油和1.6kg硅溶胶,搅拌混合均匀,然后向其中加入2.6kg实施例3制备的富硼固化剂常温下搅拌混合均匀,得到粘稠的覆膜剂;
第二步,将第一步中制备的覆膜机快速涂布在底层玻璃的表面,喷涂厚度为0.1-0.15mm,喷涂后将剥离放置在50-60℃的烘干室中烘至覆膜液凝固,此时底层剥离的表面形成一层半透明粘合玻璃膜,然后将顶层玻璃的底面压合在粘合玻璃膜表面,通过粘合薄膜的粘合作用固定,然后将复合后的双层剥离放置在室温下晾3-4天,得到双层粘合玻璃。
实施例8:
将双层玻璃之间用玻璃胶进行粘合固定,得到双层玻璃。
实施例9:
(1)对实施例4-7中制备的双层粘合玻璃进行抗辐射性能测试,具体如下:在实施例4-7制备的双层粘合玻璃表面不同的3个位置取3个点,在实施例8中制备的双层玻璃表面随机取一个点,通过数字化医用X射线摄影系统对实施例4-7中玻璃的3个点和实施例8中第一个点进行测定,并计算衰减比,以评估其抗X射线能力,结果如表1所示,其中衰减比r=(A1-A0)/A1×100%,其中A1表示实施例4-7中制备的双层粘合玻璃中三个点处加权平均灰度值的结果;A0为实施例8中一个点处的加权平均灰度值的结果;
表1:实施例4-7中制备的双层粘合玻璃的抗辐射性能测试结果
由表1可知,实施例4中制备的双层粘合玻璃之间的覆膜剂通过高强度环氧树脂和覆硼固化剂固化反应制备,由于富硼固化剂中含有硼元素,本身具有较高的抗辐射性能,并且由于高强度环氧树脂为超支化结构,进而使得富硼固化剂固化交联时均匀分布,并且由于固化剂本身具有抗辐射性能,在与环氧树脂交联固化后使得制备的覆膜剂网状结构骨架中均匀分布大量的硼元素,进而使得制备的玻璃膜拒绝有较高的抗辐射性能,并且抗辐射性能分布均匀;而实施例5和实施例7中由于使用的环氧树脂为直链环氧树脂,分散性能较差,很难与富硼固化剂充分分散混合均匀,进而使得制备的玻璃膜的抗辐射性能分散不均匀,而实施例6中使用1,3,5-三氨基苯作为固化剂,直接在固化过程种加入硼酸,由于硼酸只是分布都在骨架结构内部,而非直接接枝在骨架结构上,并且分散性较差,进而使得制备的玻璃膜中硼元素分散较差,进而导致玻璃的抗辐射性能不均一;
(2)在测定实施例4-8中制备的双层玻璃的表面选取3个位置,分别测定三个位置处的导热系数,结果如表2所示:
表2实施例4-8中制备的双层玻璃的导热系数测定结果(W/(m·k))
由表2可知,在双层玻璃之间复合玻璃隔膜后,由于含有富硼固化剂中的三个氨基均布在三个方向,在与高强度环氧树脂反应时,富硼固化剂与高强度环氧树脂超支化网状结构中交联反应,使得网状结构的空隙更小,使得全氟烷基醚季铵盐、聚醚硅油和硅溶胶均匀包覆在网状结构骨架中,全氟烷基醚季铵盐、聚醚硅油的加入使得覆膜液中引入氟元素和硅元素,进而使得覆膜液具有一定的耐老化性能和热稳定性,同时硅溶胶具有较低的导热系数,硅溶胶的加入使得覆膜液的导热系数降低;实施例5、6和7中使用的环氧树脂均为直链结构,不易分散均匀,进而使得制备的玻璃膜过程中全氟烷基醚季铵盐、聚醚硅油和硅溶胶分布不均匀,进而导致玻璃膜的导热系数不均匀。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。